main.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698
  1. import logging
  2. import os
  3. import json
  4. import re
  5. import uuid
  6. import random
  7. import openai
  8. import requests
  9. from openai import OpenAI
  10. from flask import Flask, request, jsonify, send_from_directory, url_for
  11. from convert import alpaca_to_chatgpt, csv_to_jsonl
  12. app = Flask(__name__)
  13. ssl = None
  14. # ssl =('/etc/ssl/sample.crt', '/etc/ssl/sample.pem')
  15. app.openai_key = os.environ.get("OPENAI_KEY", "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")
  16. app.openai_client = OpenAI(api_key=app.openai_key)
  17. #logging.basicConfig(level=logging.DEBUG, filename='/jkt-disk-01/app/mms/chatgpt-apache/chatgpt.log', format='%(asctime)s %(message)s')
  18. app.chat_messages = [
  19. {"role": "system",
  20. "content": "Please respond professionally and in a friendly manner, using the same language as the original request. Use emoji responsibly."}
  21. ]
  22. app.translate_messages = [
  23. {"role": "system",
  24. "content": "Please translate using the requested language."}
  25. ]
  26. app.suggest_messages = [
  27. {"role": "system",
  28. "content": "Please suggest reply messages based on the previous conversations and the user's request."}
  29. ]
  30. app.recommend_messages = [
  31. {"role": "system",
  32. "content": "Give normalized total weight of each category in json based on headlines"
  33. }
  34. ]
  35. app.summary_messages = [
  36. {"role": "system",
  37. "content": "Please summarize an article."
  38. }
  39. ]
  40. UPLOAD_FOLDER = 'files'
  41. app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
  42. @app.route('/files/<name>')
  43. def download_file(name):
  44. return send_from_directory(app.config["UPLOAD_FOLDER"], name)
  45. @app.route('/', methods=['GET', 'POST'])
  46. def test():
  47. return jsonify({"status": "0"})
  48. def roulette() -> str:
  49. roulette_arr = [(80, "gpt-4o-mini"), (20, "gpt-4o")]
  50. rand_num = random.randrange(0, 99)
  51. model_name = ""
  52. n = 0
  53. j = 0
  54. while rand_num >= n:
  55. n += roulette_arr[j][0]
  56. model_name = roulette_arr[j][1]
  57. print(model_name)
  58. j += 1
  59. return model_name
  60. def prune_message(message: dict):
  61. for k in list(message.keys()):
  62. if k != 'role' and k != 'content':
  63. message.pop(k)
  64. return message
  65. def recommend(headlines, category):
  66. chat_messages = app.recommend_messages.copy()
  67. try:
  68. json_payload = {
  69. "role": "user",
  70. "content": f"""{headlines}
  71. Berikan nilai berat masing-masing kategori, jumlahkan dan normalisasikan:
  72. {category}
  73. Berikan dalam bentuk json
  74. """
  75. }
  76. chat_messages.append(json_payload)
  77. json_response = app.openai_client.chat.completions.create(model="gpt-4o-mini",
  78. messages=chat_messages,
  79. response_format={"type": "json_object"}
  80. )
  81. result = {"status": "ok", "message": json.loads(json_response.choices[0].message.content)}
  82. except openai.APITimeoutError as e:
  83. app.logger.exception("error")
  84. result = {"status": "error", "message": e.message}, 408
  85. except openai.NotFoundError as e:
  86. app.logger.exception("error")
  87. result = {"status": "error", "message": json.loads(e.response.content)['error']['message']}, e.status_code
  88. except Exception as error_print:
  89. app.logger.exception("error")
  90. result = {"status": "error", "message": "Please try again"}, 405
  91. return result
  92. def vision(message, image_url=None, image_b64=None):
  93. chat_messages = app.chat_messages.copy()
  94. url = ""
  95. if image_url:
  96. url = f"{image_url}"
  97. elif image_b64:
  98. url = f"data:image/jpeg;base64,{image_b64}"
  99. try:
  100. json_payload = {
  101. "role": "user",
  102. "content": [
  103. {"type": "text", "text": message},
  104. {
  105. "type": "image_url",
  106. "image_url": {
  107. "url": url,
  108. },
  109. },
  110. ],
  111. }
  112. chat_messages.append(json_payload)
  113. json_response = app.openai_client.chat.completions.create(
  114. model="gpt-4o",
  115. messages=chat_messages,
  116. max_tokens=500
  117. )
  118. result = {"role": "assistant", "content": json_response.choices[0].message.content}
  119. except openai.APITimeoutError as e:
  120. app.logger.exception("error")
  121. result = {"status": "error", "message": e.message}, 408
  122. except openai.NotFoundError as e:
  123. app.logger.exception("error")
  124. result = {"status": "error", "message": json.loads(e.response.content)['error']['message']}, e.status_code
  125. except Exception as e:
  126. app.logger.exception("error")
  127. result = {"status": "error", "message": "Please try again"}, 405
  128. return result
  129. @app.route('/gpt', methods=['POST'])
  130. def gpt():
  131. assistant_id = ""
  132. assistant = None
  133. chat_messages = app.chat_messages.copy()
  134. chat_model = "gpt-4o-mini"
  135. use_video = False
  136. suggest = False
  137. summarize = False
  138. expression = False
  139. predict_q = 0
  140. max_char_msg = 500
  141. max_resp_token = 600
  142. category = []
  143. headlines = []
  144. image_url = ""
  145. num_choices = 1
  146. json_payload = request.get_json()
  147. if not json_payload:
  148. json_payload = []
  149. has_named_params = False
  150. if isinstance(json_payload, dict):
  151. has_named_params = 'payload' in json_payload
  152. if 'payload' in json_payload:
  153. if 'predict_q' in json_payload:
  154. predict_q = 5 if json_payload['predict_q'] > 4 else 0 if json_payload['predict_q'] < 1 else \
  155. json_payload['predict_q']
  156. if 'num_choices' in json_payload:
  157. num_choices = 5 if json_payload['num_choices'] > 4 else 1 if json_payload['num_choices'] < 2 else \
  158. json_payload['num_choices']
  159. if 'use_video' in json_payload:
  160. use_video = json_payload['use_video'] == "1"
  161. if 'chat_model' in json_payload and 'assistant_id' not in json_payload:
  162. chat_model = json_payload['chat_model']
  163. max_resp_token = 2048
  164. if 'expression' in json_payload:
  165. expression = json_payload['expression'] == "1"
  166. if 'translate' in json_payload:
  167. chat_messages = app.translate_messages.copy()
  168. json_payload['payload'][-1]['content'] = json_payload['payload'][-1][
  169. 'content'] + f" (Translate to {json_payload['translate']})"
  170. elif 'suggest' in json_payload:
  171. suggest = json_payload['suggest'] == "1"
  172. if suggest:
  173. chat_messages = app.suggest_messages.copy()
  174. else:
  175. chat_messages = app.chat_messages.copy()
  176. json_payload['payload'][-1]['content'] = json_payload['payload'][-1][
  177. 'content'] + f" What can I say to him/her?"
  178. elif 'summarize' in json_payload:
  179. summarize = json_payload['summarize'] == "1"
  180. if summarize:
  181. chat_messages = app.summary_messages.copy()
  182. max_char_msg = 2000
  183. max_resp_token = 1000
  184. else:
  185. chat_messages = app.chat_messages.copy()
  186. json_payload['payload'][-1]['content'] = f"Please summarize this article:\n" + \
  187. json_payload['payload'][-1]['content']
  188. elif 'assistant_id' in json_payload:
  189. assistant_id = json_payload['assistant_id']
  190. assistant = app.openai_client.beta.assistants.retrieve(assistant_id=assistant_id)
  191. chat_model = assistant.model
  192. else:
  193. chat_messages = app.chat_messages.copy()
  194. json_payload = json_payload['payload']
  195. if isinstance(json_payload, dict):
  196. json_payload = [json_payload]
  197. elif 'greeting' in json_payload:
  198. chat_messages = app.chat_messages.copy()
  199. company_name = json_payload['greeting']['company_name']
  200. timestamp = json_payload['greeting']['timestamp']
  201. islamic_message = f"Apakah Nama '{company_name}' terdapat unsur islami? Jawab dengan 'Ya' atau 'Tidak'"
  202. islam_messages = app.chat_messages.copy()
  203. islam_messages.append({
  204. "role": "user",
  205. "content": islamic_message
  206. })
  207. islamic_response = app.openai_client.chat.completions.create(model="gpt-4o-mini",
  208. messages=islam_messages,
  209. max_tokens=2, temperature=0.5)
  210. if 'Ya' in islamic_response.choices[0].message.content:
  211. greeting_message = f"Buatkan respons chatbot berupa greeting dari chat perusahaan bernama {company_name} pada jam {timestamp}, tidak perlu mention waktu, dan jawab dengan 'Assalamu'alaikum...' terlebih dahulu"
  212. else:
  213. greeting_message = f"Buatkan respons chatbot berupa greeting dari chat perusahaan bernama {company_name} pada jam {timestamp}, tidak perlu mention waktu"
  214. json_payload = [
  215. {
  216. "role": "user",
  217. "content": greeting_message
  218. }
  219. ]
  220. elif 'recommend' in json_payload:
  221. headlines = json_payload['recommend']['headlines']
  222. category = json_payload['recommend']['category']
  223. return recommend(headlines, category)
  224. elif 'image_url' in json_payload:
  225. image = json_payload['image_url']
  226. message = json_payload["message"] if 'message' in json_payload else "Ini gambar apa?"
  227. return vision(message, image_url=image)
  228. elif 'image_b64' in json_payload:
  229. image = json_payload['image_b64']
  230. message = json_payload["message"] if 'message' in json_payload else "Ini gambar apa?"
  231. return vision(message, image_b64=image_url)
  232. else:
  233. app.logger.info("This request use old json format")
  234. chat_messages = app.chat_messages.copy()
  235. app.logger.info("Chat Messages:")
  236. app.logger.info(str(chat_messages))
  237. json_payload = json_payload[-5:]
  238. if assistant_id:
  239. chat_messages = []
  240. for message in json_payload:
  241. p_message = prune_message(message)
  242. if p_message['role'] == 'user':
  243. content = p_message['content'].lower()
  244. else:
  245. content = p_message['content']
  246. content_arr = content.split(" ")
  247. new_content_arr = content[:max_char_msg].split(" ")
  248. new_content_len = len(new_content_arr)
  249. arr = []
  250. for i in range(new_content_len):
  251. arr.append(content_arr[i])
  252. p_message['content'] = " ".join(arr)
  253. chat_messages.append(p_message)
  254. app.logger.info(chat_messages)
  255. result = {}
  256. try:
  257. n = num_choices
  258. if "gpt-3.5-turbo" or "gpt-4o-mini" in chat_model:
  259. chat_model = roulette()
  260. app.logger.info(f"Model used: {chat_model}")
  261. if assistant_id and not suggest:
  262. runs = app.openai_client.beta.threads.create_and_run_poll(
  263. assistant_id=assistant_id,
  264. thread={
  265. "messages": chat_messages
  266. }
  267. )
  268. if runs.status != "completed":
  269. result = {"role": "assistant", "content": "Maaf, saat ini saya sedang sibuk. Coba beberapa saat lagi."}
  270. else:
  271. messages = list(app.openai_client.beta.threads.messages.list(thread_id=runs.thread_id, run_id=runs.id))
  272. try:
  273. message_content = messages[0].content[0].text
  274. app.logger.info(message_content.value)
  275. pattern = re.compile(r"【\d+:\d+†\(?source\)?】")
  276. filtered_message = pattern.sub("", message_content.value)
  277. result = {"role": "assistant", "content": filtered_message}
  278. except IndexError:
  279. result = {"role": "assistant", "content": "Saat ini saya tidak memiliki informasi yang diperlukan untuk menjawab pertanyaan Anda."}
  280. else:
  281. json_response = app.openai_client.chat.completions.create(model=chat_model,
  282. messages=chat_messages,
  283. max_tokens=max_resp_token, temperature=0.7, n=n)
  284. app.logger.info(json_response.choices[0].message)
  285. if has_named_params:
  286. if suggest:
  287. choices = json_response.choices
  288. messages = [i.message for i in choices]
  289. json_formatted = []
  290. for message in messages:
  291. json_formatted.append({"role": "assistant", "content": message.content})
  292. result = {"url": "", "message": json_formatted}
  293. else:
  294. if use_video:
  295. # TODO: to be implemented
  296. result = {"url": url_for('download_file', name="test.mp4", _external=True),
  297. "message": {"role": "assistant", "content": json_response.choices[0].message.content}}
  298. else:
  299. result = {"role": "assistant", "content": json_response.choices[0].message.content}
  300. else:
  301. result = {"role": "assistant", "content": json_response.choices[0].message.content}
  302. if expression:
  303. exprr = expresso(text=result['content'])
  304. result['expression'] = exprr['expression']
  305. if predict_q:
  306. if assistant_id:
  307. query_q = {
  308. "role": "user",
  309. "content": f"Berikan {predict_q} pertanyaan random yang akan saya ajukan sesuai topik asisten dalam bentuk json array"
  310. }
  311. else:
  312. query_q = {
  313. "role": "user",
  314. "content": f"Berikan {predict_q} pertanyaan lain yang akan saya ajukan berdasarkan percakapan kali ini dalam bentuk json array"
  315. }
  316. chat_messages.append(prune_message(result))
  317. chat_messages.append(query_q)
  318. if assistant_id:
  319. runs = app.openai_client.beta.threads.create_and_run_poll(
  320. assistant_id=assistant_id,
  321. thread={
  322. "messages": chat_messages
  323. },
  324. max_completion_tokens=600,
  325. max_prompt_tokens=600
  326. )
  327. messages = list(app.openai_client.beta.threads.messages.list(thread_id=runs.thread_id, run_id=runs.id))
  328. message_content = messages[0].content[0].text
  329. app.logger.info(message_content.value)
  330. pattern = re.compile(r"【\d+:\d+†\(?source\)?】")
  331. filtered_message = pattern.sub("", message_content.value)
  332. predict_q_arr = [
  333. {
  334. "role": "system",
  335. "content": assistant.instructions
  336. },
  337. {
  338. "role": "assistant",
  339. "content": filtered_message
  340. },
  341. {
  342. "role": "user",
  343. "content": f"Ekstrak {predict_q} pertanyaan tersebut dalam bentuk json array"
  344. }
  345. ]
  346. json_response_q = app.openai_client.chat.completions.create(
  347. model=chat_model,
  348. messages=predict_q_arr,
  349. temperature=0.2,
  350. response_format={"type": "json_object"}
  351. )
  352. else:
  353. json_response_q = app.openai_client.chat.completions.create(model=chat_model,
  354. messages=chat_messages,
  355. max_tokens=max_resp_token,
  356. temperature=0.2,
  357. response_format={"type": "json_object"})
  358. json_response_dict = json.loads(json_response_q.choices[0].message.content)
  359. if json_response_dict is not None:
  360. if isinstance(json_response_dict, dict):
  361. if len(json_response_dict) > 1:
  362. qs = []
  363. for q in json_response_dict.values():
  364. qs.append(q)
  365. json_response_dict = qs
  366. else:
  367. try:
  368. first_key = next(iter(json_response_dict))
  369. json_response_dict = json_response_dict[first_key]
  370. except StopIteration:
  371. json_response_dict = []
  372. elif isinstance(json_response_dict, str):
  373. json_response_dict = [json_response_dict]
  374. result["predict_q"] = json_response_dict
  375. except openai.APITimeoutError as e:
  376. app.logger.exception("error")
  377. result = {"status": "error", "message": e.message}, 408
  378. except openai.NotFoundError as e:
  379. app.logger.exception("error")
  380. result = {"status": "error", "message": json.loads(e.response.content)['error']['message']}, e.status_code
  381. except Exception:
  382. app.logger.exception("error")
  383. result = {"status": "error", "message": "Please try again"}, 405
  384. return result
  385. @app.route('/train', methods=['POST'])
  386. def train():
  387. prev_model = "gpt-3.5-turbo"
  388. instructions = None
  389. if 'job_id' in request.form:
  390. return train_with_id(job_id=request.form['job_id'])
  391. elif 'train_file' in request.files:
  392. train_file = request.files['train_file']
  393. app.logger.info({"filename": train_file.filename})
  394. if 'instructions' in request.form:
  395. instructions = request.form['instructions']
  396. openai_file = None
  397. if train_file.filename.split('.')[1] == 'jsonl':
  398. openai_file = train_file.stream.read()
  399. elif train_file.filename.split('.')[1] == 'csv':
  400. openai_file = csv_to_jsonl(train_file.stream.read(), instructions)
  401. elif train_file.filename.split('.')[1] == 'json':
  402. openai_file = alpaca_to_chatgpt(train_file, instructions)
  403. if 'prev_model' in request.form:
  404. prev_model = request.form['prev_model']
  405. app.logger.info(f"Previous model: {prev_model}")
  406. if 'mock' not in request.form:
  407. f = app.openai_client.files.create(
  408. file=openai_file,
  409. purpose="fine-tune"
  410. )
  411. job = app.openai_client.fine_tuning.jobs.create(
  412. training_file=f.id,
  413. model=prev_model,
  414. hyperparameters={
  415. "n_epochs": 5
  416. }
  417. )
  418. app.logger.info({"mock": "no", "status": job.status, "job_id": job.id})
  419. retval = {"status": job.status, "job_id": job.id}
  420. return retval
  421. else:
  422. app.logger.info({"mock": "yes", "status": "ok"})
  423. return {"status": "ok"}
  424. else:
  425. app.logger.error({"status": "error", "message": "Training file not found"})
  426. return {"status": "error", "message": "Training file not found"}
  427. def train_with_id(job_id):
  428. try:
  429. job = app.openai_client.fine_tuning.jobs.retrieve(job_id)
  430. if job.fine_tuned_model is None:
  431. app.logger.info({"job_id": job_id, "status": job.status})
  432. return {"status": job.status}
  433. else:
  434. app.logger.info({"job_id": job_id, "status": job.status, "model_name": job.fine_tuned_model})
  435. return {"status": job.status, "model_name": job.fine_tuned_model}
  436. except Exception as error_print:
  437. app.logger.exception("error")
  438. return {"status": "Could not find job from id"}
  439. @app.route('/assistant/create', methods=['POST'])
  440. def assistant_create():
  441. model_name = "gpt-4o-mini"
  442. assistant_name = "Assistant"
  443. assistant_ins = "Please respond professionally and in a friendly manner, using the same language as the original request."
  444. if request.is_json:
  445. request_form = request.json
  446. else:
  447. request_form = request.form.copy()
  448. assistant_name = request_form.pop('name', assistant_name)
  449. assistant_ins = request_form.pop('instructions', assistant_ins)
  450. model_name = request_form.pop('model_name', model_name)
  451. vector_store_id = request_form.pop('vector_store_id', "")
  452. file_batch_id = ""
  453. try:
  454. temperature = float(request_form.pop('temperature', 1.0))
  455. if temperature < 0.0:
  456. temperature = 0.0
  457. elif temperature > 1.0:
  458. temperature = 1.0
  459. except ValueError:
  460. temperature = 1.0
  461. tool_resources = {"tool_resources": {"file_search": {"vector_store_ids": [vector_store_id]}}} \
  462. if vector_store_id \
  463. else {}
  464. try:
  465. assistant = app.openai_client.beta.assistants.create(
  466. name=assistant_name,
  467. instructions=assistant_ins,
  468. model=model_name,
  469. tools=[{"type": "file_search"}],
  470. temperature=temperature,
  471. **tool_resources,
  472. **request_form
  473. )
  474. if 'attachment1' in request.files and not vector_store_id:
  475. resp_att = assistant_att()
  476. retval = {}
  477. if resp_att['status'] == 'completed':
  478. resp_upd = assistant_update(assistant.id, resp_att['vector_store_id'])
  479. assistant_updated = "1" if resp_upd['status'] == 'ok' else "0"
  480. else:
  481. assistant_updated = "0"
  482. if 'vector_store_id' in resp_att:
  483. retval['vector_store_id'] = resp_att['vector_store_id']
  484. if 'file_batch_id' in resp_att:
  485. retval['file_batch_id'] = resp_att['file_batch_id']
  486. retval['status'] = "ok"
  487. retval['assistant_id'] = assistant.id
  488. retval['assistant_updated'] = assistant_updated
  489. return retval
  490. else:
  491. return {"status": "ok", "assistant_id": assistant.id, "assistant_updated": "1" if vector_store_id else "0"}
  492. except ValueError as e:
  493. app.logger.exception("error")
  494. return {"status": "error",
  495. "message": "Failed to create assistant, please check whether your parameters are correct"}
  496. except openai.NotFoundError as e:
  497. app.logger.exception("error")
  498. return {"status": "error", "message": json.loads(e.response.content)['error']['message']}, e.status_code
  499. except Exception:
  500. app.logger.exception("error")
  501. return {"status": "error", "message": "Failed to create assistant, please try again"}, 405
  502. @app.route('/assistant/attachment', methods=['POST'])
  503. def assistant_att():
  504. vector_store_id = request.form.get('vector_store_id', '')
  505. file_batch_id = request.form.get('file_batch_id', '')
  506. attachments: list[str] = []
  507. try:
  508. if not file_batch_id:
  509. if 'attachment1' not in request.files:
  510. return {"status": "error", "message": "No file for attachments"}
  511. else:
  512. has_attachments = True
  513. n = 1
  514. while has_attachments:
  515. if f'attachment{n}' in request.files:
  516. retf = app.openai_client.files.create(
  517. file=(request.files[f'attachment{n}'].filename,
  518. request.files[f'attachment{n}'].read()),
  519. purpose="assistants"
  520. )
  521. retf.filename = request.files[f'attachment{n}'].filename
  522. attachments.append(retf.id)
  523. n = n + 1
  524. else:
  525. has_attachments = False
  526. if vector_store_id:
  527. vector_store = app.openai_client.beta.vector_stores.retrieve(vector_store_id=vector_store_id)
  528. else:
  529. vector_store = app.openai_client.beta.vector_stores.create(
  530. expires_after={
  531. "anchor": "last_active_at",
  532. "days": 365
  533. }
  534. )
  535. file_batch = app.openai_client.beta.vector_stores.file_batches.create_and_poll(
  536. vector_store_id=vector_store.id,
  537. file_ids=attachments
  538. )
  539. return {"status": file_batch.status, "vector_store_id": vector_store.id, "file_batch_id": file_batch.id}
  540. else:
  541. file_batch = app.openai_client.beta.vector_stores.file_batches.retrieve(file_batch_id,
  542. vector_store_id=vector_store_id)
  543. return {"status": file_batch.status}
  544. except Exception as e:
  545. app.logger.exception("error")
  546. return {"status": "error", "message": "Upload attachment failed, please try again"}
  547. @app.route('/assistant/attachment/update', methods=['POST'])
  548. def assistant_attachment_update():
  549. pass
  550. @app.route('/assistant/update', methods=['POST'])
  551. def assistant_update(aid=None, vid=None):
  552. try:
  553. request_form = request.form.copy()
  554. if aid is not None and vid is not None:
  555. assistant_id = aid
  556. vector_store_id = vid
  557. else:
  558. assistant_id = request_form.pop('assistant_id')
  559. vector_store_id = request_form.pop('vector_store_id', None)
  560. kwargs = {"assistant_id": assistant_id}
  561. if vector_store_id is not None:
  562. kwargs['tool_resources'] = {"file_search": {"vector_store_ids": [vector_store_id]}}
  563. if 'name' in request_form:
  564. kwargs['name'] = request_form.pop('name')
  565. if 'instructions' in request_form:
  566. kwargs['instructions'] = request_form.pop('instructions')
  567. app.openai_client.beta.assistants.update(**kwargs)
  568. return {"status": "ok"}
  569. except Exception as e:
  570. app.logger.exception("error")
  571. return {"status": "error", "message": "Update assistant failed, please try again"}
  572. @app.route('/llama', methods=['POST'])
  573. def llama():
  574. max_char_msg = 500
  575. max_resp_token = 600
  576. json_payload = request.get_json()
  577. if not json_payload:
  578. json_payload = []
  579. has_named_params = False
  580. if isinstance(json_payload, dict):
  581. has_named_params = 'payload' in json_payload
  582. if 'payload' in json_payload:
  583. json_payload = json_payload['payload']
  584. if isinstance(json_payload, dict):
  585. json_payload = [json_payload]
  586. else:
  587. json_payload = [json_payload]
  588. message = json_payload[-1]
  589. content = message['content']
  590. content_arr = content.split(" ")
  591. new_content_arr = content[:max_char_msg].split(" ")
  592. new_content_len = len(new_content_arr)
  593. arr = []
  594. for i in range(new_content_len):
  595. arr.append(content_arr[i])
  596. content = " ".join(arr)
  597. content = content + " Jawab dengan Bahasa Indonesia"
  598. try:
  599. json_request = {
  600. "model": "llama3.1",
  601. "prompt": content,
  602. "stream": False
  603. }
  604. r = requests.post("http://localhost:11434/api/generate", json=json_request)
  605. if r.status_code == 200:
  606. result = {
  607. "role": "assistant",
  608. "content": r.json()["response"]
  609. }
  610. else:
  611. result = {}, r.status_code
  612. except Exception as e:
  613. app.logger.exception("error")
  614. result = {"status": "error", "message": "Please try again"}, 405
  615. return result
  616. @app.route('/speech', methods=['POST'])
  617. def speech(text=""):
  618. if not text and 'text' not in request.form:
  619. audio_file = request.files.get('audio')
  620. res = app.openai_client.audio.transcriptions.create(
  621. model="whisper-1",
  622. file=(audio_file.filename, audio_file.stream.read())
  623. )
  624. return {"status": "ok", "message": res.text}
  625. elif 'text' in request.form or text:
  626. text = request.form['text'] if 'text' in request.form else text
  627. uu_id = str(uuid.uuid4())
  628. print(text)
  629. with app.openai_client.audio.speech.with_streaming_response.create(
  630. model="tts-1-hd",
  631. voice="echo",
  632. speed=0.8,
  633. input=text
  634. ) as res:
  635. res.stream_to_file(os.path.join(app.config['UPLOAD_FOLDER'], f"{uu_id}.mp3"))
  636. return download_file(f"{uu_id}.mp3")
  637. @app.route('/expression', methods=['POST'])
  638. def expresso(text=""):
  639. if not text:
  640. if 'text' in request.form:
  641. text = request.form['text']
  642. else:
  643. return {"status": "error", "message": "No text for expression"}
  644. response = app.openai_client.chat.completions.create(
  645. model="gpt-4o-mini",
  646. messages=[
  647. {
  648. "role": "user",
  649. "content": f"What is the closest expression of this text, choose between happy, sad, indifferent, fear, anger, surprise, or disgust, output json with key 'expression':\n\n{text}\n\n"
  650. }
  651. ],
  652. response_format={"type": "json_object"}
  653. )
  654. response_message = response.choices[0].message.content
  655. return json.loads(response_message)
  656. # Press the green button in the gutter to run the script.
  657. if __name__ == '__main__':
  658. app.run(host='0.0.0.0', port=8348, debug=True, ssl_context=ssl)
  659. # See PyCharm help at https://www.jetbrains.com/help/pycharm/