main.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. import logging
  2. import os
  3. import json
  4. import re
  5. import uuid
  6. import random
  7. import openai
  8. import requests
  9. from openai import OpenAI
  10. from flask import Flask, request, jsonify, send_from_directory, url_for
  11. from convert import alpaca_to_chatgpt, csv_to_jsonl
  12. app = Flask(__name__)
  13. ssl = None
  14. # ssl =('/etc/ssl/sample.crt', '/etc/ssl/sample.pem')
  15. app.openai_key = os.environ.get("OPENAI_KEY", "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")
  16. app.openai_client = OpenAI(api_key=app.openai_key)
  17. #logging.basicConfig(level=logging.DEBUG, filename='/jkt-disk-01/app/mms/chatgpt-apache/chatgpt.log', format='%(asctime)s %(message)s')
  18. app.chat_messages = [
  19. {"role": "system",
  20. "content": "Please respond professionally and in a friendly manner, using the same language as the original request."}
  21. ]
  22. app.translate_messages = [
  23. {"role": "system",
  24. "content": "Please translate using the requested language."}
  25. ]
  26. app.suggest_messages = [
  27. {"role": "system",
  28. "content": "Please suggest reply messages based on the previous conversations and the user's request."}
  29. ]
  30. app.recommend_messages = [
  31. {"role": "system",
  32. "content": "Give normalized total weight of each category in json based on headlines"
  33. }
  34. ]
  35. app.summary_messages = [
  36. {"role": "system",
  37. "content": "Please summarize an article."
  38. }
  39. ]
  40. UPLOAD_FOLDER = 'files'
  41. app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
  42. @app.route('/files/<name>')
  43. def download_file(name):
  44. return send_from_directory(app.config["UPLOAD_FOLDER"], name)
  45. @app.route('/', methods=['GET', 'POST'])
  46. def test():
  47. return jsonify({"status": "0"})
  48. def roulette() -> str:
  49. roulette_arr = [(80, "gpt-3.5-turbo"), (20, "gpt-4o")]
  50. rand_num = random.randrange(0, 99)
  51. model_name = ""
  52. n = 0
  53. j = 0
  54. while rand_num > n:
  55. n += roulette_arr[j][0]
  56. model_name = roulette_arr[j][1]
  57. print(model_name)
  58. j += 1
  59. return model_name
  60. def recommend(headlines, category):
  61. chat_messages = app.recommend_messages.copy()
  62. try:
  63. json_payload = {
  64. "role": "user",
  65. "content": f"""{headlines}
  66. Berikan nilai berat masing-masing kategori, jumlahkan dan normalisasikan:
  67. {category}
  68. Berikan dalam bentuk json
  69. """
  70. }
  71. chat_messages.append(json_payload)
  72. json_response = app.openai_client.chat.completions.create(model="gpt-3.5-turbo",
  73. messages=chat_messages,
  74. response_format={"type": "json_object"}
  75. )
  76. result = {"status": "ok", "message": json.loads(json_response.choices[0].message.content)}
  77. except openai.APITimeoutError as e:
  78. app.logger.exception("error")
  79. result = {"status": "error", "message": e.message}, 408
  80. except openai.NotFoundError as e:
  81. app.logger.exception("error")
  82. result = {"status": "error", "message": json.loads(e.response.content)['error']['message']}, e.status_code
  83. except Exception as error_print:
  84. app.logger.exception("error")
  85. result = {"status": "error", "message": "Please try again"}, 405
  86. return result
  87. def vision(message, image_url=None, image_b64=None):
  88. chat_messages = app.chat_messages.copy()
  89. url = ""
  90. if image_url:
  91. url = f"{image_url}"
  92. elif image_b64:
  93. url = f"data:image/jpeg;base64,{image_b64}"
  94. try:
  95. json_payload = {
  96. "role": "user",
  97. "content": [
  98. {"type": "text", "text": message},
  99. {
  100. "type": "image_url",
  101. "image_url": {
  102. "url": url,
  103. },
  104. },
  105. ],
  106. }
  107. chat_messages.append(json_payload)
  108. json_response = app.openai_client.chat.completions.create(
  109. model="gpt-4o",
  110. messages=chat_messages,
  111. max_tokens=500
  112. )
  113. result = {"role": "assistant", "content": json_response.choices[0].message.content}
  114. except openai.APITimeoutError as e:
  115. app.logger.exception("error")
  116. result = {"status": "error", "message": e.message}, 408
  117. except openai.NotFoundError as e:
  118. app.logger.exception("error")
  119. result = {"status": "error", "message": json.loads(e.response.content)['error']['message']}, e.status_code
  120. except Exception as e:
  121. app.logger.exception("error")
  122. result = {"status": "error", "message": "Please try again"}, 405
  123. return result
  124. @app.route('/gpt', methods=['POST'])
  125. def gpt():
  126. assistant_id = ""
  127. assistant = None
  128. chat_messages = []
  129. chat_model = "gpt-3.5-turbo"
  130. use_video = False
  131. suggest = False
  132. summarize = False
  133. predict_q = 0
  134. max_char_msg = 500
  135. max_resp_token = 600
  136. category = []
  137. headlines = []
  138. image_url = ""
  139. num_choices = 1
  140. json_payload = request.get_json()
  141. if not json_payload:
  142. json_payload = []
  143. has_named_params = False
  144. if isinstance(json_payload, dict):
  145. has_named_params = 'payload' in json_payload
  146. if 'payload' in json_payload:
  147. if 'predict_q' in json_payload:
  148. predict_q = 5 if json_payload['predict_q'] > 4 else 0 if json_payload['predict_q'] < 1 else \
  149. json_payload['predict_q']
  150. if 'num_choices' in json_payload:
  151. num_choices = 5 if json_payload['num_choices'] > 4 else 1 if json_payload['num_choices'] < 2 else \
  152. json_payload['num_choices']
  153. if 'use_video' in json_payload:
  154. use_video = json_payload['use_video'] == "1"
  155. if 'chat_model' in json_payload and 'assistant_id' not in json_payload:
  156. chat_model = json_payload['chat_model']
  157. max_resp_token = 2048
  158. if 'translate' in json_payload:
  159. chat_messages = app.translate_messages.copy()
  160. json_payload['payload'][-1]['content'] = json_payload['payload'][-1][
  161. 'content'] + f" (Translate to {json_payload['translate']})"
  162. elif 'suggest' in json_payload:
  163. suggest = json_payload['suggest'] == "1"
  164. if suggest:
  165. chat_messages = app.suggest_messages.copy()
  166. else:
  167. chat_messages = app.chat_messages.copy()
  168. json_payload['payload'][-1]['content'] = json_payload['payload'][-1][
  169. 'content'] + f" What can I say to him/her?"
  170. elif 'summarize' in json_payload:
  171. summarize = json_payload['summarize'] == "1"
  172. if summarize:
  173. chat_messages = app.summary_messages.copy()
  174. max_char_msg = 2000
  175. max_resp_token = 1000
  176. else:
  177. chat_messages = app.chat_messages.copy()
  178. json_payload['payload'][-1]['content'] = f"Please summarize this article:\n" + \
  179. json_payload['payload'][-1]['content']
  180. elif 'assistant_id' in json_payload:
  181. assistant_id = json_payload['assistant_id']
  182. assistant = app.openai_client.beta.assistants.retrieve(assistant_id=assistant_id)
  183. chat_model = assistant.model
  184. else:
  185. chat_messages = app.chat_messages.copy()
  186. json_payload = json_payload['payload']
  187. if isinstance(json_payload, dict):
  188. json_payload = [json_payload]
  189. elif 'greeting' in json_payload:
  190. chat_messages = app.chat_messages.copy()
  191. company_name = json_payload['greeting']['company_name']
  192. timestamp = json_payload['greeting']['timestamp']
  193. islamic_message = f"Apakah Nama '{company_name}' terdapat unsur islami? Jawab dengan 'Ya' atau 'Tidak'"
  194. islam_messages = app.chat_messages.copy()
  195. islam_messages.append({
  196. "role": "user",
  197. "content": islamic_message
  198. })
  199. islamic_response = app.openai_client.chat.completions.create(model="gpt-3.5-turbo", # GPT-3.5 Turbo engine
  200. messages=islam_messages,
  201. max_tokens=2, temperature=0.5)
  202. if 'Ya' in islamic_response.choices[0].message.content:
  203. greeting_message = f"Buatkan respons chatbot berupa greeting dari chat perusahaan bernama {company_name} pada jam {timestamp}, tidak perlu mention waktu, dan jawab dengan 'Assalamu'alaikum...' terlebih dahulu"
  204. else:
  205. greeting_message = f"Buatkan respons chatbot berupa greeting dari chat perusahaan bernama {company_name} pada jam {timestamp}, tidak perlu mention waktu"
  206. json_payload = [
  207. {
  208. "role": "user",
  209. "content": greeting_message
  210. }
  211. ]
  212. elif 'recommend' in json_payload:
  213. headlines = json_payload['recommend']['headlines']
  214. category = json_payload['recommend']['category']
  215. return recommend(headlines, category)
  216. elif 'image_url' in json_payload:
  217. image = json_payload['image_url']
  218. message = json_payload["message"] if 'message' in json_payload else "Ini gambar apa?"
  219. return vision(message, image_url=image)
  220. elif 'image_b64' in json_payload:
  221. image = json_payload['image_b64']
  222. message = json_payload["message"] if 'message' in json_payload else "Ini gambar apa?"
  223. return vision(message, image_b64=image_url)
  224. else:
  225. chat_messages = app.chat_messages.copy()
  226. json_payload = [json_payload]
  227. json_payload = json_payload[-5:]
  228. for message in json_payload:
  229. if message['role'] == 'user':
  230. content = message['content'].lower()
  231. else:
  232. content = message['content']
  233. content_arr = content.split(" ")
  234. new_content_arr = content[:max_char_msg].split(" ")
  235. new_content_len = len(new_content_arr)
  236. arr = []
  237. for i in range(new_content_len):
  238. arr.append(content_arr[i])
  239. message['content'] = " ".join(arr)
  240. chat_messages.append(message)
  241. app.logger.info(chat_messages)
  242. result = {}
  243. try:
  244. n = num_choices
  245. if "gpt-3.5-turbo" in chat_model:
  246. chat_model = roulette()
  247. app.logger.info(f"Model used: {chat_model}")
  248. if assistant_id and not suggest:
  249. runs = app.openai_client.beta.threads.create_and_run_poll(
  250. assistant_id=assistant_id,
  251. thread={
  252. "messages": chat_messages
  253. }
  254. )
  255. messages = list(app.openai_client.beta.threads.messages.list(thread_id=runs.thread_id, run_id=runs.id))
  256. message_content = messages[0].content[0].text
  257. app.logger.info(message_content.value)
  258. pattern = re.compile(r"【\d+:\d+†\(?source\)?】")
  259. filtered_message = pattern.sub("", message_content.value)
  260. result = {"role": "assistant", "content": filtered_message}
  261. else:
  262. json_response = app.openai_client.chat.completions.create(model=chat_model,
  263. messages=chat_messages,
  264. max_tokens=max_resp_token, temperature=0.7, n=n)
  265. app.logger.info(json_response.choices[0].message)
  266. if has_named_params:
  267. if suggest:
  268. choices = json_response.choices
  269. messages = [i.message for i in choices]
  270. json_formatted = []
  271. for message in messages:
  272. json_formatted.append({"role": "assistant", "content": message.content})
  273. result = {"url": "", "message": json_formatted}
  274. else:
  275. if use_video:
  276. # TODO: to be implemented
  277. result = {"url": url_for('download_file', name="test.mp4", _external=True),
  278. "message": {"role": "assistant", "content": json_response.choices[0].message.content}}
  279. else:
  280. result = {"role": "assistant", "content": json_response.choices[0].message.content}
  281. else:
  282. result = {"role": "assistant", "content": json_response.choices[0].message.content}
  283. if predict_q:
  284. if assistant_id:
  285. query_q = {
  286. "role": "user",
  287. "content": f"Berikan {predict_q} pertanyaan random yang akan saya ajukan sesuai topik asisten dalam bentuk json array"
  288. }
  289. else:
  290. query_q = {
  291. "role": "user",
  292. "content": f"Berikan {predict_q} pertanyaan lain yang akan saya ajukan berdasarkan percakapan kali ini dalam bentuk json array"
  293. }
  294. chat_messages.append(result)
  295. chat_messages.append(query_q)
  296. if assistant_id:
  297. runs = app.openai_client.beta.threads.create_and_run_poll(
  298. assistant_id=assistant_id,
  299. thread={
  300. "messages": chat_messages
  301. }
  302. )
  303. messages = list(app.openai_client.beta.threads.messages.list(thread_id=runs.thread_id, run_id=runs.id))
  304. message_content = messages[0].content[0].text
  305. app.logger.info(message_content.value)
  306. pattern = re.compile(r"【\d+:\d+†\(?source\)?】")
  307. filtered_message = pattern.sub("", message_content.value)
  308. predict_q_arr = [
  309. {
  310. "role": "system",
  311. "content": assistant.instructions
  312. },
  313. {
  314. "role": "assistant",
  315. "content": filtered_message
  316. },
  317. {
  318. "role": "user",
  319. "content": f"Ekstrak {predict_q} pertanyaan tersebut dalam bentuk json array"
  320. }
  321. ]
  322. json_response_q = app.openai_client.chat.completions.create(
  323. model=chat_model,
  324. messages=predict_q_arr,
  325. temperature=0.2,
  326. response_format={"type": "json_object"}
  327. )
  328. else:
  329. json_response_q = app.openai_client.chat.completions.create(model=chat_model,
  330. messages=chat_messages,
  331. max_tokens=max_resp_token,
  332. temperature=0.2,
  333. response_format={"type": "json_object"})
  334. json_response_dict = json.loads(json_response_q.choices[0].message.content)
  335. if json_response_dict is not None:
  336. if isinstance(json_response_dict, dict):
  337. if len(json_response_dict) > 1:
  338. qs = []
  339. for q in json_response_dict.values():
  340. qs.append(q)
  341. json_response_dict = qs
  342. else:
  343. try:
  344. first_key = next(iter(json_response_dict))
  345. json_response_dict = json_response_dict[first_key]
  346. except StopIteration:
  347. json_response_dict = []
  348. elif isinstance(json_response_dict, str):
  349. json_response_dict = [json_response_dict]
  350. result["predict_q"] = json_response_dict
  351. except openai.APITimeoutError as e:
  352. app.logger.exception("error")
  353. result = {"status": "error", "message": e.message}, 408
  354. except openai.NotFoundError as e:
  355. app.logger.exception("error")
  356. result = {"status": "error", "message": json.loads(e.response.content)['error']['message']}, e.status_code
  357. except Exception:
  358. app.logger.exception("error")
  359. result = {"status": "error", "message": "Please try again"}, 405
  360. return result
  361. @app.route('/train', methods=['POST'])
  362. def train():
  363. prev_model = "gpt-3.5-turbo"
  364. if 'job_id' in request.form:
  365. return train_with_id(job_id=request.form['job_id'])
  366. elif 'train_file' in request.files:
  367. train_file = request.files['train_file']
  368. app.logger.info({"filename": train_file.filename})
  369. openai_file = None
  370. if train_file.filename.split('.')[1] == 'jsonl':
  371. openai_file = train_file.stream.read()
  372. elif train_file.filename.split('.')[1] == 'csv':
  373. openai_file = csv_to_jsonl(train_file.stream.read())
  374. elif train_file.filename.split('.')[1] == 'json':
  375. openai_file = alpaca_to_chatgpt(train_file)
  376. if 'prev_model' in request.form:
  377. prev_model = request.form['prev_model']
  378. app.logger.info(f"Previous model: {prev_model}")
  379. if 'mock' not in request.form:
  380. f = app.openai_client.files.create(
  381. file=openai_file,
  382. purpose="fine-tune"
  383. )
  384. job = app.openai_client.fine_tuning.jobs.create(
  385. training_file=f.id,
  386. model=prev_model,
  387. hyperparameters={
  388. "n_epochs": 5
  389. }
  390. )
  391. app.logger.info({"mock": "no", "status": job.status, "job_id": job.id})
  392. retval = {"status": job.status, "job_id": job.id}
  393. return retval
  394. else:
  395. app.logger.info({"mock": "yes", "status": "ok"})
  396. return {"status": "ok"}
  397. else:
  398. app.logger.error({"status": "error", "message": "Training file not found"})
  399. return {"status": "error", "message": "Training file not found"}
  400. def train_with_id(job_id):
  401. try:
  402. job = app.openai_client.fine_tuning.jobs.retrieve(job_id)
  403. if job.fine_tuned_model is None:
  404. app.logger.info({"job_id": job_id, "status": job.status})
  405. return {"status": job.status}
  406. else:
  407. app.logger.info({"job_id": job_id, "status": job.status, "model_name": job.fine_tuned_model})
  408. return {"status": job.status, "model_name": job.fine_tuned_model}
  409. except Exception as error_print:
  410. app.logger.exception("error")
  411. return {"status": "Could not find job from id"}
  412. @app.route('/assistant/create', methods=['POST'])
  413. def assistant_create():
  414. model_name = "gpt-3.5-turbo"
  415. assistant_name = "Assistant"
  416. assistant_ins = "Please respond professionally and in a friendly manner, using the same language as the original request."
  417. if request.is_json:
  418. request_form = request.json
  419. else:
  420. request_form = request.form.copy()
  421. assistant_name = request_form.pop('name', assistant_name)
  422. assistant_ins = request_form.pop('instructions', assistant_ins)
  423. model_name = request_form.pop('model_name', model_name)
  424. vector_store_id = request_form.pop('vector_store_id', "")
  425. file_batch_id = ""
  426. try:
  427. temperature = float(request_form.pop('temperature', 1.0))
  428. if temperature < 0.0:
  429. temperature = 0.0
  430. elif temperature > 1.0:
  431. temperature = 1.0
  432. except ValueError:
  433. temperature = 1.0
  434. tool_resources = {"tool_resources": {"file_search": {"vector_store_ids": [vector_store_id]}}} \
  435. if vector_store_id \
  436. else {}
  437. try:
  438. assistant = app.openai_client.beta.assistants.create(
  439. name=assistant_name,
  440. instructions=assistant_ins,
  441. model=model_name,
  442. tools=[{"type": "file_search"}],
  443. temperature=temperature,
  444. **tool_resources,
  445. **request_form
  446. )
  447. if 'attachment1' in request.files and not vector_store_id:
  448. resp_att = assistant_att()
  449. retval = {}
  450. if resp_att['status'] == 'completed':
  451. resp_upd = assistant_update(assistant.id, resp_att['vector_store_id'])
  452. assistant_updated = "1" if resp_upd['status'] == 'ok' else "0"
  453. else:
  454. assistant_updated = "0"
  455. if 'vector_store_id' in resp_att:
  456. retval['vector_store_id'] = resp_att['vector_store_id']
  457. if 'file_batch_id' in resp_att:
  458. retval['file_batch_id'] = resp_att['file_batch_id']
  459. retval['status'] = "ok"
  460. retval['assistant_id'] = assistant.id
  461. retval['assistant_updated'] = assistant_updated
  462. return retval
  463. else:
  464. return {"status": "ok", "assistant_id": assistant.id, "assistant_updated": "1" if vector_store_id else "0"}
  465. except ValueError as e:
  466. app.logger.exception("error")
  467. return {"status": "error",
  468. "message": "Failed to create assistant, please check whether your parameters are correct"}
  469. except openai.NotFoundError as e:
  470. app.logger.exception("error")
  471. return {"status": "error", "message": json.loads(e.response.content)['error']['message']}, e.status_code
  472. except Exception:
  473. app.logger.exception("error")
  474. return {"status": "error", "message": "Failed to create assistant, please try again"}, 405
  475. @app.route('/assistant/attachment', methods=['POST'])
  476. def assistant_att():
  477. vector_store_id = request.form.get('vector_store_id', '')
  478. file_batch_id = request.form.get('file_batch_id', '')
  479. attachments: list[str] = []
  480. try:
  481. if not file_batch_id:
  482. if 'attachment1' not in request.files:
  483. return {"status": "error", "message": "No file for attachments"}
  484. else:
  485. has_attachments = True
  486. n = 1
  487. while has_attachments:
  488. if f'attachment{n}' in request.files:
  489. retf = app.openai_client.files.create(
  490. file=(request.files[f'attachment{n}'].filename,
  491. request.files[f'attachment{n}'].read()),
  492. purpose="assistants"
  493. )
  494. retf.filename = request.files[f'attachment{n}'].filename
  495. attachments.append(retf.id)
  496. n = n + 1
  497. else:
  498. has_attachments = False
  499. if vector_store_id:
  500. vector_store = app.openai_client.beta.vector_stores.retrieve(vector_store_id=vector_store_id)
  501. else:
  502. vector_store = app.openai_client.beta.vector_stores.create(
  503. expires_after={
  504. "anchor": "last_active_at",
  505. "days": 365
  506. }
  507. )
  508. file_batch = app.openai_client.beta.vector_stores.file_batches.create_and_poll(
  509. vector_store_id=vector_store.id,
  510. file_ids=attachments
  511. )
  512. return {"status": file_batch.status, "vector_store_id": vector_store.id, "file_batch_id": file_batch.id}
  513. else:
  514. file_batch = app.openai_client.beta.vector_stores.file_batches.retrieve(file_batch_id,
  515. vector_store_id=vector_store_id)
  516. return {"status": file_batch.status}
  517. except Exception as e:
  518. app.logger.exception("error")
  519. return {"status": "error", "message": "Upload attachment failed, please try again"}
  520. @app.route('/assistant/update', methods=['POST'])
  521. def assistant_update(aid=None, vid=None):
  522. try:
  523. request_form = request.form.copy()
  524. if aid is not None and vid is not None:
  525. assistant_id = aid
  526. vector_store_id = vid
  527. else:
  528. assistant_id = request_form.pop('assistant_id')
  529. vector_store_id = request_form.pop('vector_store_id', None)
  530. kwargs = {"assistant_id": assistant_id}
  531. if vector_store_id is not None:
  532. kwargs['tool_resources'] = {"file_search": {"vector_store_ids": [vector_store_id]}}
  533. if 'name' in request_form:
  534. kwargs['name'] = request_form.pop('name')
  535. if 'instructions' in request_form:
  536. kwargs['instructions'] = request_form.pop('instructions')
  537. app.openai_client.beta.assistants.update(**kwargs)
  538. return {"status": "ok"}
  539. except Exception as e:
  540. app.logger.exception("error")
  541. return {"status": "error", "message": "Update assistant failed, please try again"}
  542. @app.route('/llama', methods=['POST'])
  543. def llama():
  544. max_char_msg = 500
  545. max_resp_token = 600
  546. json_payload = request.get_json()
  547. if not json_payload:
  548. json_payload = []
  549. has_named_params = False
  550. if isinstance(json_payload, dict):
  551. has_named_params = 'payload' in json_payload
  552. if 'payload' in json_payload:
  553. json_payload = json_payload['payload']
  554. if isinstance(json_payload, dict):
  555. json_payload = [json_payload]
  556. else:
  557. json_payload = [json_payload]
  558. message = json_payload[-1]
  559. content = message['content']
  560. content_arr = content.split(" ")
  561. new_content_arr = content[:max_char_msg].split(" ")
  562. new_content_len = len(new_content_arr)
  563. arr = []
  564. for i in range(new_content_len):
  565. arr.append(content_arr[i])
  566. content = " ".join(arr)
  567. content = content + " Jawab dengan Bahasa Indonesia"
  568. try:
  569. json_request = {
  570. "model": "llama3",
  571. "prompt": content,
  572. "stream": False
  573. }
  574. r = requests.post("http://localhost:11434/api/generate", json=json_request)
  575. if r.status_code == 200:
  576. result = {
  577. "role": "assistant",
  578. "content": r.json()["response"]
  579. }
  580. else:
  581. result = {}, r.status_code
  582. except Exception as e:
  583. app.logger.exception("error")
  584. result = {"status": "error", "message": "Please try again"}, 405
  585. return result
  586. @app.route('/speech', methods=['POST'])
  587. def speech(text=""):
  588. if not text and 'text' not in request.form:
  589. audio_file = request.files.get('audio')
  590. res = app.openai_client.audio.transcriptions.create(
  591. model="whisper-1",
  592. file=(audio_file.filename, audio_file.stream.read())
  593. )
  594. return {"status": "ok", "message": res.text}
  595. elif 'text' in request.form or text:
  596. text = request.form['text'] if 'text' in request.form else text
  597. uu_id = str(uuid.uuid4())
  598. print(text)
  599. with app.openai_client.audio.speech.with_streaming_response.create(
  600. model="tts-1-hd",
  601. voice="echo",
  602. speed=0.8,
  603. input=text
  604. ) as res:
  605. res.stream_to_file(os.path.join(app.config['UPLOAD_FOLDER'], f"{uu_id}.mp3"))
  606. return download_file(f"{uu_id}.mp3")
  607. # Press the green button in the gutter to run the script.
  608. if __name__ == '__main__':
  609. app.run(host='0.0.0.0', port=8348, debug=True, ssl_context=ssl)
  610. # See PyCharm help at https://www.jetbrains.com/help/pycharm/