|
@@ -50,7 +50,7 @@ dummy_data = [
|
|
|
ssl = None
|
|
|
known_people = "application_data/verification_images"
|
|
|
known_faces = []
|
|
|
-total_threshold = 0.3
|
|
|
+total_threshold = 0.2
|
|
|
face_model = "large"
|
|
|
if face_model == "large":
|
|
|
model_file_name = "saved_model_2_large.pkl"
|
|
@@ -109,15 +109,26 @@ def predict():
|
|
|
name = dummy_data[i]["name"]
|
|
|
address = dummy_data[i]["address"]
|
|
|
nik = dummy_data[i]["nik"]
|
|
|
- js = {
|
|
|
- "id": str(i),
|
|
|
- "name": name,
|
|
|
- "address": address,
|
|
|
- "nik": nik,
|
|
|
- "proba": proba,
|
|
|
- "delta": total[0][i]
|
|
|
- }
|
|
|
- result.append(js)
|
|
|
+ if total[0][i] > total_threshold:
|
|
|
+ js = {
|
|
|
+ "id": str(i),
|
|
|
+ "name": name,
|
|
|
+ "address": address,
|
|
|
+ "nik": nik,
|
|
|
+ "proba": proba,
|
|
|
+ "delta": total[0][i]
|
|
|
+ }
|
|
|
+ else:
|
|
|
+ js = {
|
|
|
+ "id": -1,
|
|
|
+ "name": "Unknown",
|
|
|
+ "address": "",
|
|
|
+ "nik": "",
|
|
|
+ "proba": 0.0,
|
|
|
+ "delta": 0.0
|
|
|
+ }
|
|
|
+ if total[0][i] > total_threshold or (not result and i == no - 1):
|
|
|
+ result.append(js)
|
|
|
end_time = time.perf_counter()
|
|
|
process_time = end_time - start_time
|
|
|
print(total[0])
|