import face_recognition import cv2 import numpy as np import joblib import time import os clf = joblib.load('saved_model.pkl') classes = clf.classes_ threshold = 0.65 test_image = face_recognition.load_image_file(os.path.join('application_data', 'input_image', 'input_image2.jpg')) while True: rgb_frame = test_image[:, :, ::-1] # Find all the faces and face enqcodings in the frame of video face_locations = face_recognition.face_locations(rgb_frame) no = len(face_locations) print("Number of faces detected: ", no) face_encodings = face_recognition.face_encodings(rgb_frame, face_locations) # Loop through each face in this frame of video for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings): start_time = time.perf_counter_ns() proba_list = clf.predict_proba([face_encoding]) end_time = time.perf_counter_ns() process_time = end_time - start_time i = np.argmax(proba_list) proba = list(*proba_list)[i] name = classes[i] print(name, "{:.2f}".format(proba), proba_list, process_time) # Draw a box around the face cv2.rectangle(test_image, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(test_image, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) if(proba > threshold): font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(test_image, "{} {:.2f}".format(name, proba), (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image cv2.imshow('Video', test_image) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam cv2.destroyAllWindows()