123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- import face_recognition
- import cv2
- import numpy as np
- import joblib
- import time
- # This is a super simple (but slow) example of running face recognition on live video from your webcam.
- # There's a second example that's a little more complicatedq but runs faster.
- # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
- # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
- # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
- # Get a reference to webcam #0 (the default one)
- video_capture = cv2.VideoCapture(0)
- clf = joblib.load('saved_model_2.pkl')
- classes = clf.classes_
- threshold = 0.9
- dummy_data = [
- {
- "name": "Bayu",
- "address": "299 St Louis Road Oak Forest, IL 60452",
- "nik": "1000076456784631"
- },
- {
- "name": "Dio",
- "address": "22 Whitemarsh St. Mansfield, MA 02048",
- "nik": "1000024792887549"
- },
- {
- "name": "Hadi",
- "address": "643 Honey Creek Dr. Milledgeville, GA 31061",
- "nik": "1000038502830420"
- },
- {
- "name": "Kevin",
- "address": "881 Cooper Ave. Hummelstown, PA 17036",
- "nik": "1000045356476664"
- },
- {
- "name": "Matrix",
- "address": "580 Glenwood Dr. Garner, NC 27529",
- "nik": "1000023452134598"
- },
- {
- "name": "Surya",
- "address": "909 South St Paul Street Hopewell, VA 23860",
- "nik": "1000075656784734"
- },
- ]
- while True:
- # Grab a single frame of video
- ret, frame = video_capture.read()
- # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
- rgb_frame = frame[:, :, ::-1]
- # Find all the faces and face enqcodings in the frame of video
- face_locations = face_recognition.face_locations(rgb_frame)
- print(face_locations)
- no = len(face_locations)
- print("Number of faces detected: ", no)
- face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
- # Loop through each face in this frame of video
- for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
- start_time = time.perf_counter_ns()
- proba_list = clf.predict_proba([face_encoding])
- end_time = time.perf_counter_ns()
- process_time = end_time - start_time
- i = np.argmax(proba_list)
- proba = list(*proba_list)[i]
- name = dummy_data[i]["name"]
- print(name, "{:.2f}".format(proba), proba_list, process_time)
- # Draw a box around the face
- cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
- # Draw a label with a name below the face
- cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
- if proba > threshold:
- font = cv2.FONT_HERSHEY_DUPLEX
- cv2.putText(frame, "{} {:.2f}".format(name, proba), (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
- # Display the resulting image
- cv2.imshow('Video', frame)
- # Hit 'q' on the keyboard to quit!
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- # Release handle to the webcam
- video_capture.release()
- cv2.destroyAllWindows()
|