123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- import face_recognition
- import cv2
- import numpy as np
- import joblib
- import time
- import os
- clf = joblib.load('saved_model.pkl')
- classes = clf.classes_
- threshold = 0.65
- test_image = face_recognition.load_image_file(os.path.join('application_data', 'input_image', 'input_image2.jpg'))
- while True:
- rgb_frame = test_image[:, :, ::-1]
- # Find all the faces and face enqcodings in the frame of video
- face_locations = face_recognition.face_locations(rgb_frame)
- no = len(face_locations)
- print("Number of faces detected: ", no)
- face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
- # Loop through each face in this frame of video
- for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
- start_time = time.perf_counter_ns()
- proba_list = clf.predict_proba([face_encoding])
- end_time = time.perf_counter_ns()
- process_time = end_time - start_time
- i = np.argmax(proba_list)
- proba = list(*proba_list)[i]
- name = classes[i]
- print(name, "{:.2f}".format(proba), proba_list, process_time)
- # Draw a box around the face
- cv2.rectangle(test_image, (left, top), (right, bottom), (0, 0, 255), 2)
- # Draw a label with a name below the face
- cv2.rectangle(test_image, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
- if(proba > threshold):
- font = cv2.FONT_HERSHEY_DUPLEX
- cv2.putText(test_image, "{} {:.2f}".format(name, proba), (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
- # Display the resulting image
- cv2.imshow('Video', test_image)
- # Hit 'q' on the keyboard to quit!
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- # Release handle to the webcam
- cv2.destroyAllWindows()
|